Quality Control Methods in Accelerometer Data Processing: Identifying Extreme Counts
نویسندگان
چکیده
منابع مشابه
Quality Control Methods in Accelerometer Data Processing: Identifying Extreme Counts
BACKGROUND Accelerometers are designed to measure plausible human activity, however extremely high count values (EHCV) have been recorded in large-scale studies. Using population data, we develop methodological principles for establishing an EHCV threshold, propose a threshold to define EHCV in the ActiGraph GT1M, determine occurrences of EHCV in a large-scale study, identify device-specific er...
متن کاملQuality Control Methods in Accelerometer Data Processing: Defining Minimum Wear Time
BACKGROUND When using accelerometers to measure physical activity, researchers need to determine whether subjects have worn their device for a sufficient period to be included in analyses. We propose a minimum wear criterion using population-based accelerometer data, and explore the influence of gender and the purposeful inclusion of children with weekend data on reliability. METHODS Accelero...
متن کاملOn Processing Extreme Data
Extreme Data is an incarnation of Big Data concept distinguished by the massive amounts of data that must be queried, communicated and analyzed in near real-time by using a very large number of memory or storage elements and exascale computing systems. Immediate examples are the scientific data produced at a rate of hundreds of gigabits-per-second that must be stored, filtered and analyzed, the...
متن کاملIdentifying Factors Affecting Household Energy Consumption Using Data Mining Methods
Due to increasing population and decreasing energy sources, this research studies the consumption of domestic energy. The purpose of this study is to predict the factors affecting household energy consumption. To do this, we use 3 algorithms, M5Rules, K-nearest neighbor and random forest, available in Weka software. In this study, the feature correlation algorithm is used to select the most imp...
متن کاملMathematical methods of data processing in the formation and evaluation of sectoral structure in agricultural enterprises
The sectoral structure of most agricultural enterprises is unbalanced and uncoordinated, which underlies the need in deepened research of its improvement. This paper is dedicated to the formation and evaluation of the sectoral structure with the use of mathematical methods of data processing. Mathematical economic modeling based on optimization and simulation models has been applied for the for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLoS ONE
سال: 2014
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0085134